
SAINIK SCHOOL GOPALGANJ

Sub: Mathematics Class-X

ASSIGNMENT - 2

Part – I (Polynomials)

- 1. The value of k for which (-4) is a zero of the polynomial $x^2 x (2k + 2)$ is (a) 3 (b) 9 (c) 6 (d) -1
- 2. The number of zeroes of the polynomial from the graph is

- (a) 0 (b) 1 (c) 2 (d) 3
- 3. If one of the zero of the quadratic polynomial $x^2 + 3x + k$ is 2, then the value of k is

 (a) 10

 (b) -10

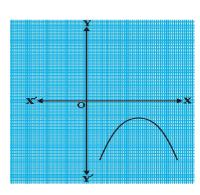
 (c) 5

 (d) -5
- 4. A quadratic polynomial whose zeroes are -3 and 4 is

(a)
$$x^2 - x + 12$$
 (b) $x^2 + x + 12$

(c)
$$2x^2 + 2x - 24$$
. (d)

None of the above.


5. The zeroes of the polynomial $x^2 + 7x + 10$ are

and -5

6. The zeroes of the polynomial $x^2 - 3$ are

none of the above

7. The number of zeroes of the polynomial from the graph is

- (a) 0 (b) 1 (c) 2 (d) 3
- 8. A quadratic polynomial whose sum and product of zeroes

are –3 and 2 is	0		0	
(a) $x^2 - 3x + 2$	(b) $x^2 + 3x +$	2 ((c) $x^2 + 2x - 3$.	
(d) $x^2 + 2x + 3$		0	0	
9. If the sum of the zeroes	of the polynon	$nial f(x) = 2x^3 -$	$3kx^2 + 4x - 5$ is 6,	then value of
k is				
(a) 2		(c) -2		
10. The zeroes of a polyno		precisely the x -c	coordinates of the p	oints, where
the graph of $y = p(x)$				
(a) x – axis				е
11. A quadratic polynomia	al can have at ı	most Zer	oes	
(a) 0 12. A cubic polynomial ca	(b) 1	(c) 2	(d) 3	
12. A cubic polynomial ca	n have at most	Zeroes.		
(a) 0 13. Which are the zeroes	(b) 1	(c) 2	(d) 3	
13. Which are the zeroes	of $p(x) = x^2 - 1$:		
(a) 1, –1	(b) – 1, 2	(c) -2, 2	2 (d) –3, 3	
(a) 1, -1 14. Which are the zeroes	of $p(x) = (x - 1)$) (x − 2):		
(a) 1, –2	(b) – 1, 2	(c) 1, 2	(d) −1, −2	
(a) 1, –2 15. A quadratic polynomia	ıl whose sum a	nd product of z	eroes are -3 and 4	is
(a) $x^2 - 3x + 12$	(b) x ² +	+ 3x + 12	(c) 2x ²	+ x - 24. (d)
None of the above.				
16. A quadratic polynomia		•	•	is
(a) $x^2 - 5$	` '		(c) $x^2 + x - 5$	
(d) none of the above				
17. A quadratic polynomia	ıl whose zeroes	s are 1 and –3 i	is	
(a) $x^2 - 2x - 3$	` '	+ 2x – 3	(c) x^2 –	2x + 3
(d) none of the abo				
18. A quadratic polynomia	ıl whos <u>e</u> sum a	nd product of z	eroes are -5 and 6	is
(a) $x^2 - 5x - 6$	(b) $x^2 + 5x -$	6	(c) $x^2 + 5x + 6$	6 (d) none of
the above.	0			
19. Which are the zeroes	of $p(x) = x^2 + 3$	x – 10:		
(a) 5, –2	(b) –5, 2	(c) –5, –	-2 (d) none of th	iese
20. Which are the zeroes	of $p(x) = 6 x^2 -$	7x – 3:		
(a) 5, –2	(b) -5, 2	(c) –5, -	–2 (d) none of th	iese
_				
Part - II				

Answers the following questions:

- 1. What is a quadratic polynomial?
- 2. What is the degree of a quadratic polynomial?
- 3. What are the zeroes of a polynomial?
- 4. How many zeroes a quadratic polynomial can have?
- 5. What is the shape of curve of a quadratic polynomial graph?
- 6. What is the relationship between zeroes and coefficients of a quadratic polynomial?
- 7. Find a quadratic polynomial, the sum and product of whose zeroes are -4 and -3 respectively.
- 8. State the division algorithm for polynomials.

- 9. State Remainder Theorem.
- 10. State Factor Theorem

Part - III

- 1. If one zero of the polynomial $5z^2 + 13z p$ is reciprocal of the other, then find p.
- 2. If the product of two zeroes of polynomial $2x^3 + 3x^2 5x 6$ is 3, then find its third
- 3. Find the polynomial of least degree which should be subtracted from the polynomial $x^4 + 2x^3 - 4x^2 + 6x - 3$ so that it is exactly divisible by $x^2 - x + 1$.
- 4. Is polynomial $y^4 + 4y^2 + 5$ have zeroes or not?
- **5.** Write a quadratic polynomial, sum of whose zeroes is $2\sqrt{3}$ and product is 5.
- **6.** Write the zeroes of the polynomial $x^2 + 2x + 1$.
- 7. A polynomial g(x) of degree zero is added to the polynomial $2x^3 + 5x^2 14x + 10$ so that it becomes exactly divisible by 2x - 3. Find the g(x).
- **8.** Find the zeroes of the quadratic polynomial $x^2 + 5x + 6$ and verify the relationship between the zeroes and the coefficients.
- **9.** Draw graph of the function $f(x) = -2x^2 + 4x$.
- **10.** If x + a is a factor of the polynomial $x^2 + px + q$ and $x^2 + mx + n$ prove that $a = \frac{n-q}{m-p}$
- 11. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time and product of its zeroes are $3, \frac{-1}{3}, \frac{5}{4}$ respectively.
- **12.** Write cubic polynomial whose zeroes are $(2+\sqrt{5})/2$, $(2-\sqrt{5})/2$ and 4.
- **13.** α , β , γ are zeroes of cubic polynomial $kx^3 5x + 9$.
- If $\alpha^3 + \beta^3 + \gamma^3 = 27$, find the value of k. 14. Two zeroes of cubic polynomial $ax^3 + 3x^2 b \times -6$ are -1 and -2. Find the third zero and value of a and b.
- **15.** α , β , γ are zeroes of cubic polynomial $x^3 2x^2 + qx r$. If $\alpha + \beta = 0$ then show that 2q = r.
- **16.** α , β , γ are zeroes of polynomial $x^3 + px^2 + qx + 2$ such that α . $\beta + 1 = 0$. Find the value of 2p + q + 5.
- 17. Using division algorithm, find the quotient and remainder on dividing f(x) by g(x), where $f(x) = 6x^3 + 13x^2 + x - 2$ and g(x) = 2x + 1

(AI CBSE 2008 C)

18. If the polynomial $6x^4 + 8x^3 + 17x^2 + 21x + 7$ is divided by another polynomial $3x^2 + 4x + 1$ then the remainder comes out to be ax + b, find 'a' and 'b'

(CBSE 2009)

19. If α and β are zeroes of the quadratic polynomial $x^2 - 6x + a$; find the value of 'a' if $3\alpha + 2\beta = 20.$

(CBSE 2010, 2011)

20. Draw the graph of the polynomial $f(x) = x^3 - 4x$.